

Preface

This document describes an algorithm which corrects an issue in “APPENDIX E Encoding and

Decoding Algorithms for Multimedia Objects” which was included as part of the GEDCOM 5.5

specification but later depreciated in GEDCOM 5.5.1. The issue causes data corruption if the

original binary data has trailing 0xFF bytes. The corrected algorithm is currently used by several

applications.

Disclaimer

© Chronoplex Software 2020.

The information in this document is provided "as is" without warranty of any kind. Chronoplex

Software does not accept any responsibility or liability arising from the use of this document.

This document is not part of any official GEDCOM specification.

GEDCOM was created by The Church of Jesus Christ of Latter-Day Saints. The GEDCOM

specifications may be copied for the purpose of reviewing or programming of genealogical

software.

Encoding and Decoding

Algorithms for Multimedia

Objects (corrected)

Introduction:

Embedded multimedia objects in GEDCOM require special handling. These objects are

normally represented by binary files which interfere with data transmission protocols. This

document describes how the binary data is encoded for transmission and then decoded to rebuild

the multimedia file.

Encoding:

Binary multimedia files are read in segments of 54 bytes. Each 54-byte segment is encoded into

a GEDCOM line value of 2 to 72 characters in length. This encoded value becomes the

<ENCODED_MULTIMEDIA_LINE> used in the MULTIMEDIA_RECORD (see page 26 of

the GEDCOM 5.5 specification).

The encoding algorithm can be accomplished using the following steps:

1. The segment of the binary multimedia file is read in chunks of 3-bytes.

2. Each 3-byte (24-bit) chunk of the segment is divided into four 6-bit encoding keys in the

range 0x00..0x3F.

3. The four 6-bit encoding keys are used to obtain four replacement characters from the

Encoding Table which are appended to the encoded line segment.

4. Special processing may be required for the last chunk which may contain fewer than 3

bytes.

 Retrieved Action

a. 0 bytes: Do nothing. The encoding is complete.

b. 1 byte: Append 0-bits to the right of the chunk until two 6-bit

encoding keys can be obtained. Obtain replacement characters for

each 6-bit key and append to the encoded line segment. The

encoding is complete.

c. 2 bytes: Append 0-bits to the right of the chunk until three 6-bit

encoding keys can be obtained. Obtain replacement characters for

each 6-bit key and append to the encoded line segment. The

encoding is complete.

Decoding:

The decoding routine converts an encoded line value back into a segment of the original binary

multimedia file.

The decoding algorithm can be accomplished using the following steps:

1. Each encoded line segment is read in chunks of four 8-bit characters.

2. Each character in the group becomes a decoding key used to look up a corresponding

byte from the Decoding Table. A new 24-bit group is formed by concatenating the low-

order 6 bits from each of the 4 bytes obtained from the Decoding Table.

3. This new 24-bit group is split into three bytes which are appended to the decoded line

segment.

4. Special processing may be required for the last chunk of the encoded line segment which

may contain fewer than four 8-bit characters.

 Retrieved Action

a. 0 characters: Do nothing. The conversion is complete.

b. 1 character: The encoded line segment in invalid.

c. 2 characters: Obtain replacement bytes for each character from the

Decoding Table. Form a new 12-bit group by

concatenating the low-order 6 bits from each of the 2 bytes

obtained from the Decoding Table. The first 8 bits on the

left form one decoded byte which is appended to the

decoded line segment. The decoding is complete.

d. 3 characters: Obtain replacement bytes for each character from the

 Decoding Table. Form a new 18-bit group by

concatenating the low-order 6 bits from each of the 3 bytes

obtained from the Decoding Table. The first 16 bits on

the left form two decoded bytes which are appended to

the decoded line segment. The decoding is complete.

GEDCOM 5.5 errata

Page 43 of the GEDCOM 5.5 specification defines the length constraint of the

<ENCODED_MULTIMEDIA_LINE> to be {1:87}. The original and corrected algorithm will

always yield an <ENCODED_MULTIMEDIA_LINE> line value between 2 and 72 characters in

length. The correct length constraint is therefore {2:72}.

Encoding Table

Encoding

key

Replacement

character

Encoding

key

Replacement

character

Encoding

key

Replacement

character

0x00 . 0x0C A 0x26 a

0x01 / 0x0D B 0x27 b

0x02 0 0x0E C 0x28 c

0x03 1 0x0F D 0x29 d

0x04 2 0x10 E 0x2A e

0x05 3 0x11 F 0x2B f

0x06 4 0x12 G 0x2C g

0x07 5 0x13 H 0x2D h

0x08 6 0x14 I 0x2E i

0x09 7 0x15 J 0x2F j

0x0A 8 0x16 K 0x30 k

0x0B 9 0x17 L 0x31 l

 0x18 M 0x32 m

 0x19 N 0x33 n

 0x1A O 0x34 o

 0x1B P 0x35 p

 0x1C Q 0x36 q

 0x1D R 0x37 r

 0x1E S 0x38 s

 0x1F T 0x39 t

 0x20 U 0x3A u

 0x21 V 0x3B v

 0x22 W 0x3C w

 0x23 X 0x3D x

 0x24 Y 0x3E y

 0x25 Z 0x3F z

Decoding Table

Decoding

key

Replacement

byte

Decoding

key

Replacement

byte

Decoding

key

Replacement

byte

. 0x00 A 0x0C a 0x26

/ 0x01 B 0x0D b 0x27

0 0x02 C 0x0E c 0x28

1 0x03 D 0x0F d 0x29

2 0x04 E 0x10 e 0x2A

3 0x05 F 0x11 f 0x2B

4 0x06 G 0x12 g 0x2C

5 0x07 H 0x13 h 0x2D

6 0x08 I 0x14 i 0x2E

7 0x09 J 0x15 j 0x2F

8 0x0A K 0x16 k 0x30

9 0x0B L 0x17 l 0x31

 M 0x18 m 0x32

 N 0x19 n 0x33

 O 0x1A o 0x34

 P 0x1B p 0x35

 Q 0x1C q 0x36

 R 0x1D r 0x37

 S 0x1E s 0x38

 T 0x1F t 0x39

 U 0x20 u 0x3A

 V 0x21 v 0x3B

 W 0x22 w 0x3C

 X 0x23 x 0x3D

 Y 0x24 y 0x3E

 Z 0x25 z 0x3F

